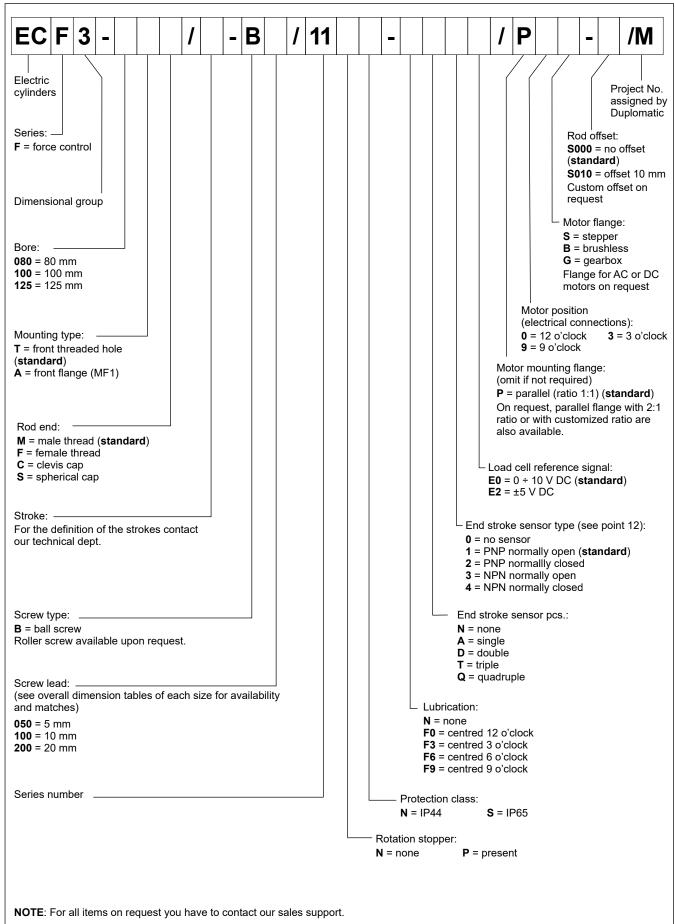


ECF3 ELECTRIC CYLINDERS FOR FORCE CONTROL APPLICATIONS

SERIES 11

DESCRIPTION


- A Electric cylinder
- B Lubrication point
- C Integrated load cell
- D Load cell cable outlet
- E Load cell power supply
- F Motor
- ECF3 cylinders are designed for all applications requiring direct force measurement and control.
- They are characterized by compact design and integrated load cell with voltage output signal.
- The linear motion transmission is realized by means of precise and with high efficiency ball screws. This series is characterized by a selection of oversized ball screws. This feature maximizes the life of the cylinders and makes them suitable for the most demanding applications.
- The cylinder design is made to minimize vibrations: the piston is precisely guided in the barrel with double sliding guide; the shaft end of the screw is supported by a bearing; the rod is guided into the front head with a long linear bushing.
- The cylinder can be equipped with a robust integrated rotation stopper.
- The piston is equipped with a magnetic ring and the external side of the barrel is provided with slots that might accommodate sensor. The rod has an increased external diameter and thickness to maximize rigidity and resistance to radial and buckling loads. The screw is supported by high-capacity bearings to allow the transmission of high loads in both directions.

PERFORMANCES

Size		80	100	125	
Maximum axial force	N	20 900	53 500	123 400	
Maximum speed	mm/s	833	533	423	
Maximum acceleration	m/s²	13	13	13	
Load cell nominal force	mm	25 000			
Maximum average axial force for 2500 km life	N	4 500 19 745 49 640			
Ambient temperature range	°C	-20 / +80			
Max air humidity allowed for IP65 (without condensation)	%	90			
Protection degree		IP44 o IP65			

1 600/122 ED 1/14

1 - IDENTIFICATION CODE

1 600/122 ED 2/14

2 - COMMON TECHNICAL CHARACTERISTICS

ENVIRONMENT	Ambient temperature range	°C	-20 / +80 (NOTE)		
	Protection class		IP44 o IP65		
	Humidity	%	0 ÷ 90		
	Duty cycle	%	100		
	Internal rotation stopper		available on all sizes		
	Rod end		male or female		
MECHANICAL	Rod material		chromium-plated (standard) stainless steel upon request		
	Mounting		on front cap or with accessories		
	End stroke sensor		available on all sizes		
	Accuracy	% FS	± 0.5		
	Repeatability	% FS	± 0.5		
LOAD CELL (force)	Total error	% FS	< 1%		
(,	Zero shifting	N	±1		
	Thermal effect on zero point	% FS	± 0.1 each 10 °C		
	Power supply	V DC	12 ÷ 24		
	Output signal	V DC	0 ÷ 10 , ±5		
ELECTRONIC CARD	Load cell connection		BN 24V Power supply BK 0÷10V o ±5V Reference signal BU 0V Common GND		
	Accuracy		<1% F (min resolution 12-bit)		

NOTE: The indicated temperature range refers to the cylinder only, without motor. If the cylinder is equipped with end stroke sensors, the temperature range has to be limited to -10 / +70 °C.

3 - FIELD OF APPLICATION

ECF3 electric cylinders are suitable:

- In normal motion systems with ball screws in automation field; to replace normal cylinders when speed and controlled ramps are required, even under load.
- In any application where motion with considerable traction / thrust forces is required.
- In any system where absence of pollution and / or extreme silence is required.

3.1 - Applications

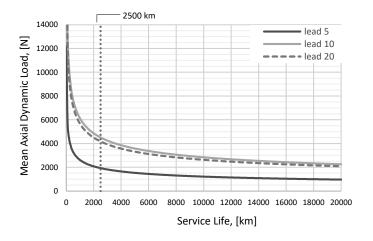
ECF3 electric cylinders are the right solution for all those applications that require accurate and controlled positioning.

In addition, by integrating a load cell, they make it possible to control the force loop directly on the sensor, and thus they provide a significant advantage for all those applications that require the measurement and control of thrust and traction parameters, such as pressing, forming, clinching and press fitting.

The installation simplicity and the different construction types make the ECF3 cylinder a reference point in this kind of product.

The possibility to share most of the standard accessories with Duplomatic MS EC*3 electric cylinders is an additional practical and cost advantage in mounting the cylinders.

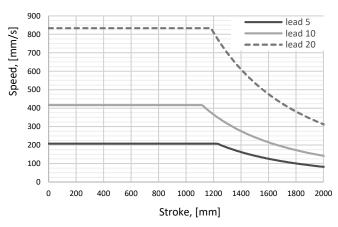
1 600/122 ED 3/14

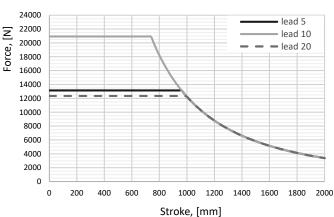

4 - ECF3-080

4.1 - Technical Characteristics

MECHANICAL	Rod diameter	mm	45		
	Rod end		M20x1.5		
BALL SCREW	Nominal diameter	mm	32	32	32
	Lead	mm	5	10	20
	Dynamic load	N	15 333	28 439	20 895
FORCE	Load cell nominal force	N	25 000		
	Max force	N	13 145	20 941	15 990
	Max torque	Nm	13	39.3	58.3
	Dynamic axial force at 2500 km lifetime	N	1 932	4 514	4 179
SPEED	Max speed	rpm	2 500		
		mm/s	208	417	833
ACCELERATION	Max acceleration	m/s²	3.2	6.4	12.7
EFFICIENCY		%	72	76	76

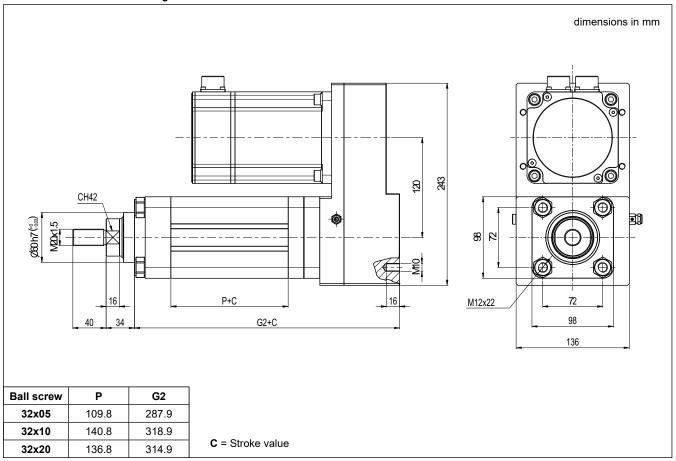
4.2 - Service Life


The service life depends on average dynamic axial load.


NOTES

- Service life is a statistical value and refers to 90% reliability.
- Correct working conditions: i.e. no lateral-load, no over-load, right lubrication, no over-temperature, no short-stroke application.
- The permissible axial force is calculated considering a pushing condition with free rod end and fixed barrel constraint. Contact us for different loading applications and for further information.

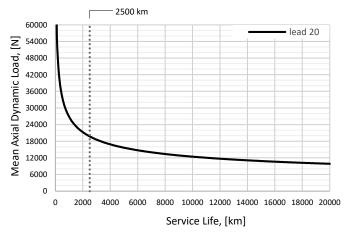
4.3 - Permissible speed


4.4 - Permissible axial force

1 600/122 ED 4/14

4.5 - ECF3-080 Overall mounting dimensions

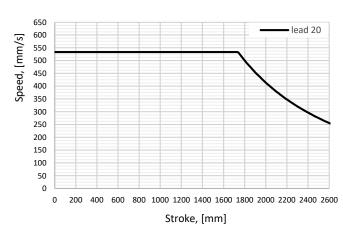
1 600/122 ED 5/14

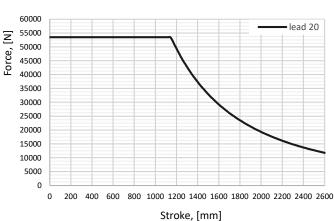

5 - ECF3-100

5.1 - Technical Characteristics

MECHANICAL	Rod diameter	mm	70
	Rod end		M42x2
BALL SCREW	Nominal diameter	mm	50
	Lead	mm	20
	Dynamic load	N	98 718
	Load cell nominal force	N	50 000
FORCE	Max force - parallel	N	53 535
FORCE	Max torque - parallel	Nm	198.3
	Dynamic axial force at 2500 km lifetime	N	19 744
SPEED	Max speed	rpm	1 600
		mm/s	533
ACCELERATION	Max acceleration	m/s²	12.7
EFFICIENCY		%	81

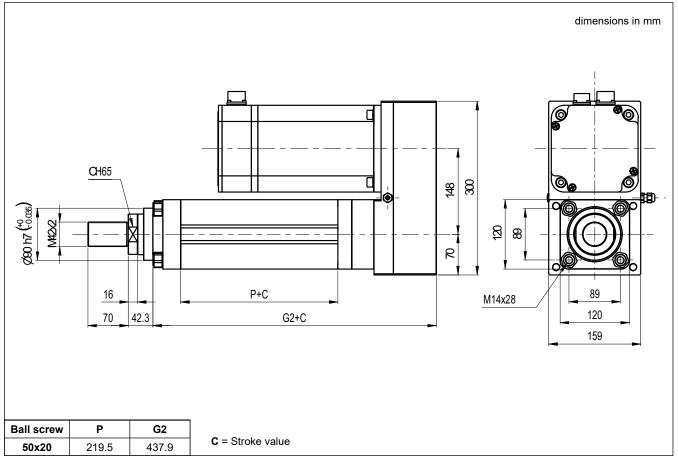
5.2 - Service Life


The service life depends on average dynamic axial load.


NOTES

- Service life is a statistical value and refers to 90% reliability.
- Correct working conditions: i.e. no lateral-load, no overload, right lubrication, no over-temperature, no shortstroke application
- The permissible axial force is calculated considering a pushing condition with free rod end and fixed barrel constraint. Contact us for different loading applications and for further information.

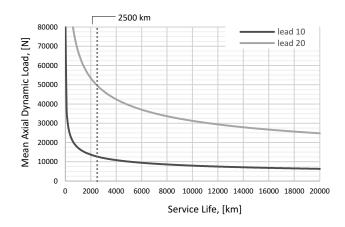
5.3 - Permissible speed


5.4 - Permissible axial force

1 600/122 ED 6/14

5.5 - ECF3-100 Overall mounting dimensions

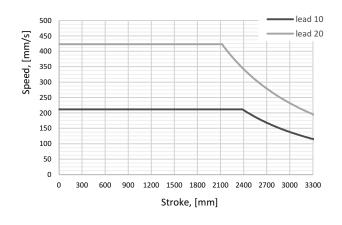
1 600/122 ED 7/14

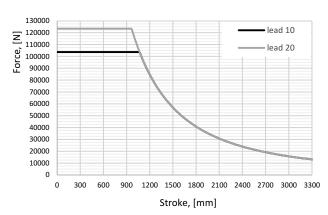

6 - ECF3-125

6.1 - Technical Characteristics

MECHANICAL	Rod diameter	mm	85		
	Rod end		M48x2		
BALL SCREW	Nominal diameter	mm	63	63	
	Lead	mm	10	20	
	Dynamic load	N	80 148	248 193	
	Load cell nominal force	N	100 000		
FORCE	Max force - parallel	N	103 823	123 485	
	Max torque - parallel	Nm	205.4	462.7	
	Dynamic axial force at 2500 km lifetime	N	12 723	49 639	
SPEED	Max speed	rpm	1270	1270	
		mm/s	212	423	
ACCELERATION	Max acceleration	m/s²	6.4	12.7	
EFFICIENCY		%	76	80	

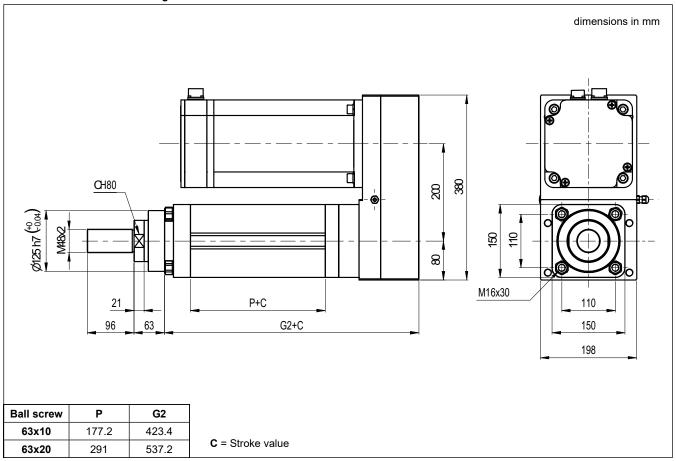
6.2 - Service Life


The service life depends on average dynamic axial load.


NOTES

- Service life is a statistical value and refers to 90% reliability.
- Correct working conditions: i.e. no lateral-load, no over-load, right lubrication, no over-temperature, no short-stroke application.
- The permissible axial force is calculated considering a pushing condition with free rod end and fixed barrel constraint. Contact us for different loading applications and for further information.

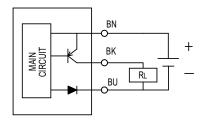
6.3 - Permissible speed


6.4 - Permissible axial force

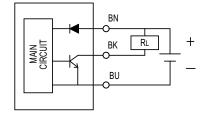
1 600/122 ED **8/14**

6.5 - ECF3-125 Overall mounting dimensions

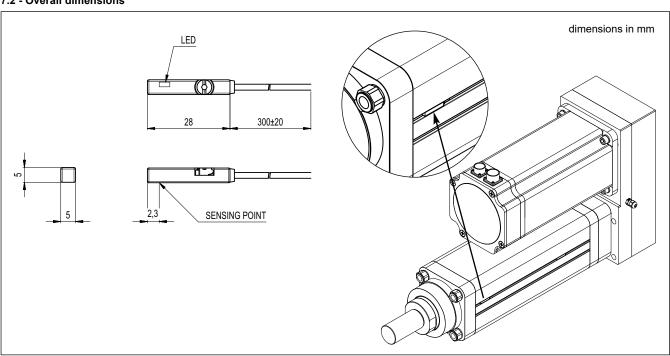
1 600/122 ED 9/14


7 - END STROKE SENSORS

All ECF3 electric cylinders can be equipped with end stroke sensors, PNP or NPN type, with normally open or normally closed function. The sensors can be single or redundant, up to 4 sensors.


The end stroke sensors are housed in the side grooves of the cylinder. The sensor must then be manually arranged in the desired point. All models are equipped with signalling LEDs.

TYPE		1	2	3	4	
Logic		PNP NPN			PN	
Sensor type		NO	NC	NO	NC	
Operating voltage	V DC	5 ÷ 30	10 ÷ 28	5 ÷ 30	10 ÷ 28	
switching current	mA	200				
Contact rating	W	6	5.5	6	5.5	
current consumption at 24V DC	mA	6	10	6	10	
Max voltage drop	V	0.5 (a 200 mA)	1.5	0.5 (a 200 mA)	1.5	
Leakage current	mA	0.01	0.05	0.01	0.05	
Switching frequency	kHz	max 1000				
Temperature	°C	-10 / +70				
Cable		Ø2.8 PUR - 26 AWG (0.15 mm²) - 3 wires - 3 meters length				


7.1 - Wiring diagram sensor type 1 and 2

sensor type 3 and 4

7.2 - Overall dimensions

1 600/122 ED 10/14

8 - MOUNTING TYPE A

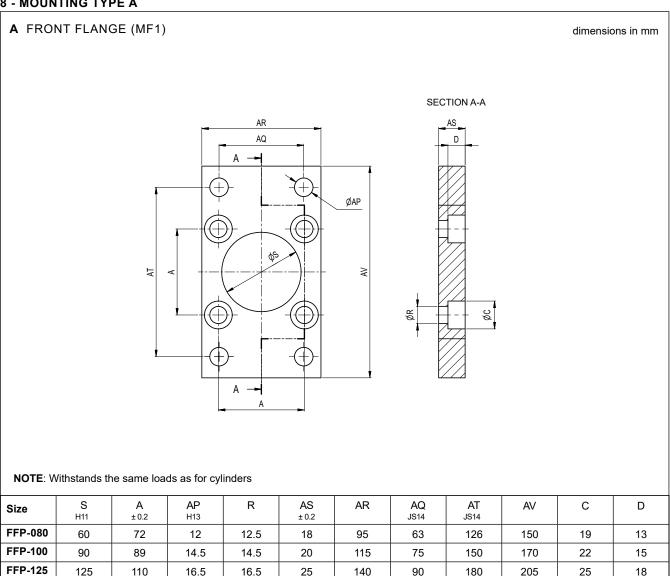
125

110

16.5

16.5

25

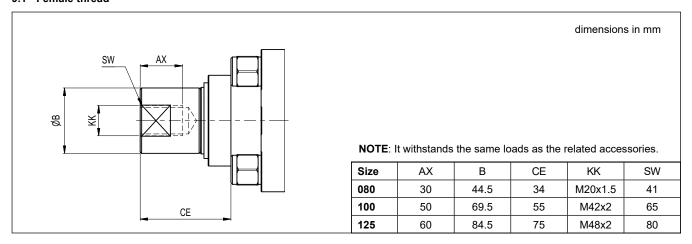

140

180

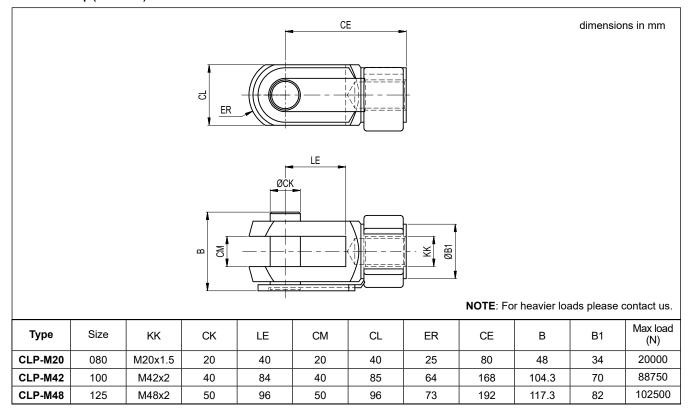
205

25

18

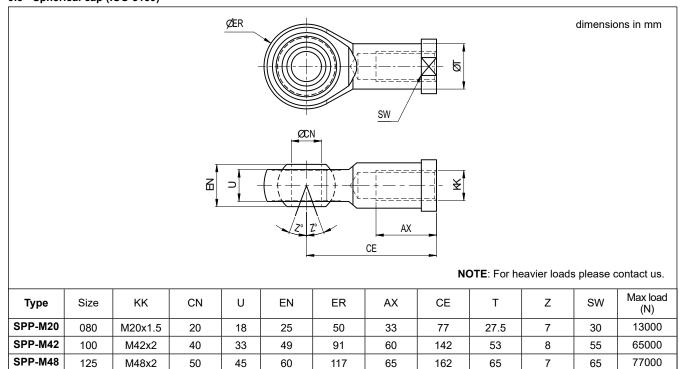


1 600/122 ED 11/14



9 - OVERALL MOUNTING DIMENSIONS FOR ROD END

9.1 - Female thread


9.2 - Clevis cap (ISO 8140)

1 600/122 ED 12/14

9.3 - Spherical cap (ISO 8139)

1 600/122 ED 13/14

DUPLOMATIC MS Spa - BU Mechatronics

Design and IO-Link Competence Center

via Delle Industrie 8, 20884 Sulbiate (MB) • ITALY tel. +39 02.93.792.670 • electric@duplomatic.com

Manufacturing and Sales

Strada della Risera 10/C, 10090 Rosta (TO) • ITALY tel. +39 011.95.40.555 • sales.linearmotion@duplomatic.com

www. duplomatic motion solutions. com